

Physical Models (and Data): From Global Climate to Coastal Upwelling and Eddies

- A new approach to blend measurements from multiple sensors and platforms (*in situ* and satellite)
 - SST
 - Wind
- Numerical modeling to enable forecast
 - Current state-of-the-art in ocean modeling: from global climate to coastal upwelling and eddies
 - Data assimilation: Enable forecasting
 - Models to fill in the data gaps
 - Data to reduce the model uncertainties
 - Forecast uncertainty as important as forecast itself
- Concluding remarks

Motivation and Approach for SST Blending

$$J = \frac{1}{2} (T - T_b)^T B^{-1} (T - T_b) + \frac{1}{2} \sum_{s=1}^{S} (H_s T - T_s)^T R_s^{-1} (H_s T - T_s)$$

Input: T_b (1st guess), B (1st guess error), T_s (Obs), R_s (Obs error), s=1, S (number of sensors/platforms)

Problem: Min(J), what is T? (Chao et al., GRL, 2003)

Output: T (blended SST; essentially a weighted average)

Unique features: multiple measurements with different resolutions; weighted by data errors; uncertainty estimate for the blended SST

Demonstration of the Blended SST Product during August 2003

Ocean has multiple scales in both time and space: From Global Conveyor Belt to El Nino, PDO & Coastal Ocean

100-km; years

10-km; hours/days

Warm shallow current

1000-km, decades

"Remote" Forcing: El Nino's influence on the California Current System

Pacific Decadal Oscillation (PDO)'s Impact on California Coastal Ocean Circulation & Fishery

(Chao et al., GRL, 2001)

PDO-PDO+

Climatic Effects on Columbia River Chinook

What is the resolution requirement for coastal models?

Global/Pacific-Basin to Regional/Coastal

Multi-scale (or "nested")
ROMS modeling approach
is developed in order to
simulate the 3D ocean at
the spatial scale (e.g., 1km) required to resolve
coastal upwelling and
eddies

Integrating Data with Models (or Data Assimilation) for Retrospective Analysis or Real-Time Nowcast/Forecast

3-dimensional variational (3DVAR) method:

$$J = 0.5 (x-x^f)^T B^{-1} (x-x^f) + 0.5 (h x-y)^T R^{-1} (h x-y)$$

y: observation

x: model

Monterey Bay August 2003 Experiment AOSN (Adaptive Ocean Sampling Network):

- * Platform & Sensors
- * Data management
- * Modeling & data assimilation

Can we deliver observational data and model predictions in real-time?

Are the model nowcast and forecast any good?

How to sustain such an integrated system?

Model Skill Assessments

Three Level Nested Prince William Sound ROMS Model _______ SST shaded Relieved with SSH

Assessment of Weather Forecast in 2005 (imagine how do we assess Ocean Forecast in 2025)

- Concept proposed in 1920s, but the major breakthrough was not made until late 1950s when the first electronic computer was used for weather forecast
- Very short-range forecasts (0–12 hour)
 - Considerable skill and utility, especially for predictions of the evolution and movement of large- and medium-sized weather systems
- Short-range forecasts (12–72 hour)
 - Forecasts of how much precipitation will fall in the 36-60-hour time frame are now more accurate than 12-36-hour predictions were during the late 1970s.
- Medium-range forecasts (3–7 days into the future)
 - Skillful day 7 forecasts will be possible in the future given the steady improvements in computer models, observational approaches, and forecast strategies.
- Extended-range forecasts (week 2)
 - The predictability of the day-to-day weather for periods beyond day 7 is usually small. Statistical forecast of the mean conditions for the 8-14-day period might be possible.
- Monthly and seasonal forecasts
 - No verifiable skill exists or is likely to exist for forecasting day-to-day weather changes beyond two weeks: "butterfly" effect (or chaos) rules.